On the Fitting ideals in free resolutions.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideals of Minors in Free Resolutions

It is interesting to ask how the invariants of the maps i, such as the ideal Ij(bi) generated by the j x j minors of q, reflect the properties of M. For example, it is not hard to show (see Buchsbaum-Eisenbud [4]) that if the grade of M is g (that is, g is the length of a maximal regular sequence contained in J) and r is the rank of the map b (that is, the size of the largest nonvanishing minor...

متن کامل

Free Resolutions and Sparse Determinantal Ideals

A sparse generic matrix is a matrix whose entries are distinct variables and zeros. Such matrices were studied by Giusti and Merle who computed some invariants of their ideals of maximal minors. In this paper we extend these results by computing a minimal free resolution for all such sparse determinantal ideals. We do so by introducing a technique for pruning minimal free resolutions when a sub...

متن کامل

Free Resolutions of Fat Point Ideals on P

Given distinct points p1, . . . , pr of a smooth variety V (over an algebraically closed field k) and positive integers mi, Z = m1p1 + · · · +mrpr denotes the subscheme defined locally at each point pi by I mi i , where Ii is the maximal ideal in the local ring OV,pi at pi of the structure sheaf. More briefly, we say Z is a fat point subscheme of V . In the case that V is P for some n, it is of...

متن کامل

On the fitting ideals of a comultiplication module

Let $R$ be a commutative ring. In this paper we assert some properties of finitely generated comultiplication modules and Fitting ideals of them.

متن کامل

Generic Subideals of Graph Ideals and Free Resolutions

For a graph of an n-cycle ∆ with Alexander dual ∆, we study the free resolution of a subideal G(n) of the Stanley-Reisner ideal I∆∗ . We prove that if G(n) is generated by 3 generic elements of I∆∗ , then the second syzygy module of G(n) is isomorphic to the second syzygy module of (x1, x2, . . . , xn). A result of Bruns shows that there is always a 3-generated ideal with this property. We show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1994

ISSN: 0026-2285

DOI: 10.1307/mmj/1029005082